Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Jaksche
1
69 kgRebellin
2
63 kgDekker
3
66 kgMillar
4
79 kgContador
5
61 kgZülle
6
72 kgJulich
7
68 kgNiermann
8
64 kgVoigt
9
76 kgBrochard
10
68 kgVandenbroucke
11
67 kgPereiro
12
67 kgKarpets
14
79 kgEtxebarria
15
68 kgVinokourov
16
68 kgde Groot
17
65 kgKirchen
18
68 kgLandis
19
68 kgRogers
20
74 kg
1
69 kgRebellin
2
63 kgDekker
3
66 kgMillar
4
79 kgContador
5
61 kgZülle
6
72 kgJulich
7
68 kgNiermann
8
64 kgVoigt
9
76 kgBrochard
10
68 kgVandenbroucke
11
67 kgPereiro
12
67 kgKarpets
14
79 kgEtxebarria
15
68 kgVinokourov
16
68 kgde Groot
17
65 kgKirchen
18
68 kgLandis
19
68 kgRogers
20
74 kg
Weight (KG) →
Result →
79
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | JAKSCHE Jörg | 69 |
2 | REBELLIN Davide | 63 |
3 | DEKKER Erik | 66 |
4 | MILLAR David | 79 |
5 | CONTADOR Alberto | 61 |
6 | ZÜLLE Alex | 72 |
7 | JULICH Bobby | 68 |
8 | NIERMANN Grischa | 64 |
9 | VOIGT Jens | 76 |
10 | BROCHARD Laurent | 68 |
11 | VANDENBROUCKE Frank | 67 |
12 | PEREIRO Óscar | 67 |
14 | KARPETS Vladimir | 79 |
15 | ETXEBARRIA Unai | 68 |
16 | VINOKOUROV Alexandre | 68 |
17 | DE GROOT Bram | 65 |
18 | KIRCHEN Kim | 68 |
19 | LANDIS Floyd | 68 |
20 | ROGERS Michael | 74 |