Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Gesink
1
70 kgSánchez
2
73 kgŠpilak
4
68 kgRolland
5
70 kgMonfort
6
66 kgLowe
7
64 kgHuguet
8
66 kgAntón
9
64 kgPasseron
10
73 kgVan den Broeck
11
69 kgLloyd
12
62 kgSørensen
13
64 kgSantaromita
14
58 kgPossoni
15
56 kgVelits
16
63 kgPerget
17
64 kgIntxausti
18
61 kgde Maar
19
70 kgHupond
20
65 kgTerpstra
21
75 kgGoesinnen
22
75 kgEuser
23
56 kg
1
70 kgSánchez
2
73 kgŠpilak
4
68 kgRolland
5
70 kgMonfort
6
66 kgLowe
7
64 kgHuguet
8
66 kgAntón
9
64 kgPasseron
10
73 kgVan den Broeck
11
69 kgLloyd
12
62 kgSørensen
13
64 kgSantaromita
14
58 kgPossoni
15
56 kgVelits
16
63 kgPerget
17
64 kgIntxausti
18
61 kgde Maar
19
70 kgHupond
20
65 kgTerpstra
21
75 kgGoesinnen
22
75 kgEuser
23
56 kg
Weight (KG) →
Result →
75
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GESINK Robert | 70 |
2 | SÁNCHEZ Luis León | 73 |
4 | ŠPILAK Simon | 68 |
5 | ROLLAND Pierre | 70 |
6 | MONFORT Maxime | 66 |
7 | LOWE Trent | 64 |
8 | HUGUET Yann | 66 |
9 | ANTÓN Igor | 64 |
10 | PASSERON Aurélien | 73 |
11 | VAN DEN BROECK Jurgen | 69 |
12 | LLOYD Matthew | 62 |
13 | SØRENSEN Chris Anker | 64 |
14 | SANTAROMITA Ivan | 58 |
15 | POSSONI Morris | 56 |
16 | VELITS Peter | 63 |
17 | PERGET Mathieu | 64 |
18 | INTXAUSTI Beñat | 61 |
19 | DE MAAR Marc | 70 |
20 | HUPOND Thierry | 65 |
21 | TERPSTRA Niki | 75 |
22 | GOESINNEN Floris | 75 |
23 | EUSER Lucas | 56 |