Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Contador
1
61 kgWiggins
2
76 kgSánchez
3
73 kgMartin
4
75 kgMillar
5
79 kgPosthuma
6
76 kgChavanel
7
73 kgColom
8
71 kgKarpets
9
79 kgPauriol
10
68 kgVan Impe
11
75 kgLemoine
12
73 kgVoigt
13
76 kgPinotti
14
67 kgTerpstra
15
75 kgHaussler
16
74 kgPaulinho
17
64 kgBodnar
18
77 kgEvans
19
64 kgFuglsang
20
67 kg
1
61 kgWiggins
2
76 kgSánchez
3
73 kgMartin
4
75 kgMillar
5
79 kgPosthuma
6
76 kgChavanel
7
73 kgColom
8
71 kgKarpets
9
79 kgPauriol
10
68 kgVan Impe
11
75 kgLemoine
12
73 kgVoigt
13
76 kgPinotti
14
67 kgTerpstra
15
75 kgHaussler
16
74 kgPaulinho
17
64 kgBodnar
18
77 kgEvans
19
64 kgFuglsang
20
67 kg
Weight (KG) →
Result →
79
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | CONTADOR Alberto | 61 |
2 | WIGGINS Bradley | 76 |
3 | SÁNCHEZ Luis León | 73 |
4 | MARTIN Tony | 75 |
5 | MILLAR David | 79 |
6 | POSTHUMA Joost | 76 |
7 | CHAVANEL Sylvain | 73 |
8 | COLOM Antonio | 71 |
9 | KARPETS Vladimir | 79 |
10 | PAURIOL Rémi | 68 |
11 | VAN IMPE Kevin | 75 |
12 | LEMOINE Cyril | 73 |
13 | VOIGT Jens | 76 |
14 | PINOTTI Marco | 67 |
15 | TERPSTRA Niki | 75 |
16 | HAUSSLER Heinrich | 74 |
17 | PAULINHO Sérgio Miguel | 64 |
18 | BODNAR Maciej | 77 |
19 | EVANS Cadel | 64 |
20 | FUGLSANG Jakob | 67 |