Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kreuziger
1
65 kgTaaramäe
2
68 kgCoppel
3
64 kgSagan
4
78 kgGautier
5
65 kgBouet
6
67 kgDe Greef
7
77 kgDi Grégorio
8
67 kgGeschke
9
64 kgMachado
10
63 kgSicard
11
63 kgSulzberger
12
65 kgCherel
13
65 kgRolland
14
70 kgMartin
15
59 kgIntxausti
16
61 kgLewis
17
65 kgPeterson
18
70 kgDelage
19
70 kgThomas
20
71 kgGeniez
21
68 kgFuglsang
22
67 kg
1
65 kgTaaramäe
2
68 kgCoppel
3
64 kgSagan
4
78 kgGautier
5
65 kgBouet
6
67 kgDe Greef
7
77 kgDi Grégorio
8
67 kgGeschke
9
64 kgMachado
10
63 kgSicard
11
63 kgSulzberger
12
65 kgCherel
13
65 kgRolland
14
70 kgMartin
15
59 kgIntxausti
16
61 kgLewis
17
65 kgPeterson
18
70 kgDelage
19
70 kgThomas
20
71 kgGeniez
21
68 kgFuglsang
22
67 kg
Weight (KG) →
Result →
78
59
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | KREUZIGER Roman | 65 |
2 | TAARAMÄE Rein | 68 |
3 | COPPEL Jérôme | 64 |
4 | SAGAN Peter | 78 |
5 | GAUTIER Cyril | 65 |
6 | BOUET Maxime | 67 |
7 | DE GREEF Francis | 77 |
8 | DI GRÉGORIO Rémy | 67 |
9 | GESCHKE Simon | 64 |
10 | MACHADO Tiago | 63 |
11 | SICARD Romain | 63 |
12 | SULZBERGER Wesley | 65 |
13 | CHEREL Mikaël | 65 |
14 | ROLLAND Pierre | 70 |
15 | MARTIN Dan | 59 |
16 | INTXAUSTI Beñat | 61 |
17 | LEWIS Craig | 65 |
18 | PETERSON Tom | 70 |
19 | DELAGE Mickaël | 70 |
20 | THOMAS Geraint | 71 |
21 | GENIEZ Alexandre | 68 |
22 | FUGLSANG Jakob | 67 |