Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Gendt
1
73 kgRoy
2
70 kgHaussler
3
74 kgSagan
4
78 kgVoigt
5
76 kgHenderson
6
75 kgWeylandt
7
72 kgFeillu
8
62 kgWyss
9
65 kgSteegmans
10
82 kgDumoulin
11
57 kgHunter
12
72 kgGoss
13
70 kgRoelandts
14
78 kgVachon
15
65 kgJeannesson
16
65 kgGavazzi
17
65 kgGaudin
18
85 kgDelpech
19
72 kgRuijgh
20
64 kgIzagirre
21
66 kgPauriol
22
68 kg
1
73 kgRoy
2
70 kgHaussler
3
74 kgSagan
4
78 kgVoigt
5
76 kgHenderson
6
75 kgWeylandt
7
72 kgFeillu
8
62 kgWyss
9
65 kgSteegmans
10
82 kgDumoulin
11
57 kgHunter
12
72 kgGoss
13
70 kgRoelandts
14
78 kgVachon
15
65 kgJeannesson
16
65 kgGavazzi
17
65 kgGaudin
18
85 kgDelpech
19
72 kgRuijgh
20
64 kgIzagirre
21
66 kgPauriol
22
68 kg
Weight (KG) →
Result →
85
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | ROY Jérémy | 70 |
3 | HAUSSLER Heinrich | 74 |
4 | SAGAN Peter | 78 |
5 | VOIGT Jens | 76 |
6 | HENDERSON Gregory | 75 |
7 | WEYLANDT Wouter | 72 |
8 | FEILLU Romain | 62 |
9 | WYSS Danilo | 65 |
10 | STEEGMANS Gert | 82 |
11 | DUMOULIN Samuel | 57 |
12 | HUNTER Robert | 72 |
13 | GOSS Matthew | 70 |
14 | ROELANDTS Jürgen | 78 |
15 | VACHON Florian | 65 |
16 | JEANNESSON Arnold | 65 |
17 | GAVAZZI Francesco | 65 |
18 | GAUDIN Damien | 85 |
19 | DELPECH Jean-Luc | 72 |
20 | RUIJGH Rob | 64 |
21 | IZAGIRRE Gorka | 66 |
22 | PAURIOL Rémi | 68 |