Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
van Garderen
1
72 kgUrán
2
63 kgSicard
3
63 kgMalacarne
4
63 kgNerz
5
67 kgUlissi
6
63 kgIzagirre
7
66 kgGeniez
8
68 kgTaaramäe
9
68 kgBoeckmans
10
76 kgDegenkolb
11
82 kgKeukeleire
12
69 kgBille
13
67 kgGarcía
14
68 kgVanmarcke
15
77 kgViviani
16
67 kgGhyselinck
17
74 kgGretsch
18
69 kgvan Winden
19
70 kgMarycz
20
69 kg
1
72 kgUrán
2
63 kgSicard
3
63 kgMalacarne
4
63 kgNerz
5
67 kgUlissi
6
63 kgIzagirre
7
66 kgGeniez
8
68 kgTaaramäe
9
68 kgBoeckmans
10
76 kgDegenkolb
11
82 kgKeukeleire
12
69 kgBille
13
67 kgGarcía
14
68 kgVanmarcke
15
77 kgViviani
16
67 kgGhyselinck
17
74 kgGretsch
18
69 kgvan Winden
19
70 kgMarycz
20
69 kg
Weight (KG) →
Result →
82
63
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GARDEREN Tejay | 72 |
2 | URÁN Rigoberto | 63 |
3 | SICARD Romain | 63 |
4 | MALACARNE Davide | 63 |
5 | NERZ Dominik | 67 |
6 | ULISSI Diego | 63 |
7 | IZAGIRRE Gorka | 66 |
8 | GENIEZ Alexandre | 68 |
9 | TAARAMÄE Rein | 68 |
10 | BOECKMANS Kris | 76 |
11 | DEGENKOLB John | 82 |
12 | KEUKELEIRE Jens | 69 |
13 | BILLE Gaëtan | 67 |
14 | GARCÍA Ricardo | 68 |
15 | VANMARCKE Sep | 77 |
16 | VIVIANI Elia | 67 |
17 | GHYSELINCK Jan | 74 |
18 | GRETSCH Patrick | 69 |
19 | VAN WINDEN Dennis | 70 |
20 | MARYCZ Jarosław | 69 |