Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bouhanni
1
65 kgDegenkolb
2
82 kgMeersman
3
63 kgHofland
4
71 kgCoquard
5
59 kgRojas
6
70 kgKristoff
7
78 kgHushovd
8
83 kgFarrar
9
73 kgSaramotins
10
75 kgDelaplace
11
65 kgFonseca
12
56 kgWackermann
13
68 kgLaborie
14
67 kgGallopin
15
69 kgFelline
16
68 kgKeukeleire
17
69 kgVan Avermaet
18
74 kgSabatini
19
74 kgThomas
20
71 kgChavanel
21
73 kgGavazzi
22
65 kgGasparotto
23
65 kg
1
65 kgDegenkolb
2
82 kgMeersman
3
63 kgHofland
4
71 kgCoquard
5
59 kgRojas
6
70 kgKristoff
7
78 kgHushovd
8
83 kgFarrar
9
73 kgSaramotins
10
75 kgDelaplace
11
65 kgFonseca
12
56 kgWackermann
13
68 kgLaborie
14
67 kgGallopin
15
69 kgFelline
16
68 kgKeukeleire
17
69 kgVan Avermaet
18
74 kgSabatini
19
74 kgThomas
20
71 kgChavanel
21
73 kgGavazzi
22
65 kgGasparotto
23
65 kg
Weight (KG) →
Result →
83
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BOUHANNI Nacer | 65 |
2 | DEGENKOLB John | 82 |
3 | MEERSMAN Gianni | 63 |
4 | HOFLAND Moreno | 71 |
5 | COQUARD Bryan | 59 |
6 | ROJAS José Joaquín | 70 |
7 | KRISTOFF Alexander | 78 |
8 | HUSHOVD Thor | 83 |
9 | FARRAR Tyler | 73 |
10 | SARAMOTINS Aleksejs | 75 |
11 | DELAPLACE Anthony | 65 |
12 | FONSECA Armindo | 56 |
13 | WACKERMANN Luca | 68 |
14 | LABORIE Christophe | 67 |
15 | GALLOPIN Tony | 69 |
16 | FELLINE Fabio | 68 |
17 | KEUKELEIRE Jens | 69 |
18 | VAN AVERMAET Greg | 74 |
19 | SABATINI Fabio | 74 |
20 | THOMAS Geraint | 71 |
21 | CHAVANEL Sylvain | 73 |
22 | GAVAZZI Francesco | 65 |
23 | GASPAROTTO Enrico | 65 |