Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kwiatkowski
1
68 kgKristoff
2
78 kgDennis
3
72 kgBouhanni
4
65 kgMartin
5
75 kgCoquard
6
59 kgSánchez
7
73 kgHaussler
8
74 kgDegenkolb
9
82 kgBoom
10
75 kgMatthews
11
72 kgNizzolo
12
72 kgRojas
13
70 kgChavanel
14
73 kgHofland
15
71 kgDelaplace
16
65 kgHivert
17
62 kgBonifazio
18
72 kgDumoulin
19
69 kgThomas
20
71 kgVoeckler
21
71 kgSwift
22
69 kg
1
68 kgKristoff
2
78 kgDennis
3
72 kgBouhanni
4
65 kgMartin
5
75 kgCoquard
6
59 kgSánchez
7
73 kgHaussler
8
74 kgDegenkolb
9
82 kgBoom
10
75 kgMatthews
11
72 kgNizzolo
12
72 kgRojas
13
70 kgChavanel
14
73 kgHofland
15
71 kgDelaplace
16
65 kgHivert
17
62 kgBonifazio
18
72 kgDumoulin
19
69 kgThomas
20
71 kgVoeckler
21
71 kgSwift
22
69 kg
Weight (KG) →
Result →
82
59
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | KWIATKOWSKI Michał | 68 |
2 | KRISTOFF Alexander | 78 |
3 | DENNIS Rohan | 72 |
4 | BOUHANNI Nacer | 65 |
5 | MARTIN Tony | 75 |
6 | COQUARD Bryan | 59 |
7 | SÁNCHEZ Luis León | 73 |
8 | HAUSSLER Heinrich | 74 |
9 | DEGENKOLB John | 82 |
10 | BOOM Lars | 75 |
11 | MATTHEWS Michael | 72 |
12 | NIZZOLO Giacomo | 72 |
13 | ROJAS José Joaquín | 70 |
14 | CHAVANEL Sylvain | 73 |
15 | HOFLAND Moreno | 71 |
16 | DELAPLACE Anthony | 65 |
17 | HIVERT Jonathan | 62 |
18 | BONIFAZIO Niccolò | 72 |
19 | DUMOULIN Tom | 69 |
20 | THOMAS Geraint | 71 |
21 | VOECKLER Thomas | 71 |
22 | SWIFT Ben | 69 |