Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Kwiatkowski
1
68 kgWellens
2
71 kgBardet
3
65 kgKelderman
4
65 kgJungels
5
70 kgYates
6
58 kgChernetski
7
63 kgAru
8
63 kgSepúlveda
9
59 kgPreidler
10
68 kgValgren
11
71 kgAlaphilippe
12
62 kgDillier
13
75 kgMatthews
14
72 kgQuintana
15
58 kgBennett
16
58 kgBonifazio
17
72 kgvan Baarle
18
78 kgPoljański
19
63 kgSénéchal
20
77 kgDuchesne
21
75 kgRowe
22
72 kgAlafaci
23
77 kg
1
68 kgWellens
2
71 kgBardet
3
65 kgKelderman
4
65 kgJungels
5
70 kgYates
6
58 kgChernetski
7
63 kgAru
8
63 kgSepúlveda
9
59 kgPreidler
10
68 kgValgren
11
71 kgAlaphilippe
12
62 kgDillier
13
75 kgMatthews
14
72 kgQuintana
15
58 kgBennett
16
58 kgBonifazio
17
72 kgvan Baarle
18
78 kgPoljański
19
63 kgSénéchal
20
77 kgDuchesne
21
75 kgRowe
22
72 kgAlafaci
23
77 kg
Weight (KG) →
Result →
78
58
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | KWIATKOWSKI Michał | 68 |
2 | WELLENS Tim | 71 |
3 | BARDET Romain | 65 |
4 | KELDERMAN Wilco | 65 |
5 | JUNGELS Bob | 70 |
6 | YATES Simon | 58 |
7 | CHERNETSKI Sergei | 63 |
8 | ARU Fabio | 63 |
9 | SEPÚLVEDA Eduardo | 59 |
10 | PREIDLER Georg | 68 |
11 | VALGREN Michael | 71 |
12 | ALAPHILIPPE Julian | 62 |
13 | DILLIER Silvan | 75 |
14 | MATTHEWS Michael | 72 |
15 | QUINTANA Dayer | 58 |
16 | BENNETT George | 58 |
17 | BONIFAZIO Niccolò | 72 |
18 | VAN BAARLE Dylan | 78 |
19 | POLJAŃSKI Paweł | 63 |
20 | SÉNÉCHAL Florian | 77 |
21 | DUCHESNE Antoine | 75 |
22 | ROWE Luke | 72 |
23 | ALAFACI Eugenio | 77 |