Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Matthews
1
72 kgDémare
2
76 kgDumoulin
3
69 kgSwift
4
69 kgBevin
5
75 kgBouhanni
6
65 kgPetit
7
80 kgHerrada
8
70 kgIzagirre
9
60 kgThomas
10
71 kgWestra
11
74 kgBoonen
12
82 kgVanmarcke
13
77 kgPérichon
14
69 kgDe Gendt
15
73 kgDevenyns
16
65 kgGeschke
17
64 kgChavanel
18
73 kgvan Genechten
19
67 kgTronet
20
67 kgHupond
21
65 kgCoppel
22
64 kg
1
72 kgDémare
2
76 kgDumoulin
3
69 kgSwift
4
69 kgBevin
5
75 kgBouhanni
6
65 kgPetit
7
80 kgHerrada
8
70 kgIzagirre
9
60 kgThomas
10
71 kgWestra
11
74 kgBoonen
12
82 kgVanmarcke
13
77 kgPérichon
14
69 kgDe Gendt
15
73 kgDevenyns
16
65 kgGeschke
17
64 kgChavanel
18
73 kgvan Genechten
19
67 kgTronet
20
67 kgHupond
21
65 kgCoppel
22
64 kg
Weight (KG) →
Result →
82
60
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MATTHEWS Michael | 72 |
2 | DÉMARE Arnaud | 76 |
3 | DUMOULIN Tom | 69 |
4 | SWIFT Ben | 69 |
5 | BEVIN Patrick | 75 |
6 | BOUHANNI Nacer | 65 |
7 | PETIT Adrien | 80 |
8 | HERRADA Jesús | 70 |
9 | IZAGIRRE Ion | 60 |
10 | THOMAS Geraint | 71 |
11 | WESTRA Lieuwe | 74 |
12 | BOONEN Tom | 82 |
13 | VANMARCKE Sep | 77 |
14 | PÉRICHON Pierre-Luc | 69 |
15 | DE GENDT Thomas | 73 |
16 | DEVENYNS Dries | 65 |
17 | GESCHKE Simon | 64 |
18 | CHAVANEL Sylvain | 73 |
19 | VAN GENECHTEN Jonas | 67 |
20 | TRONET Steven | 67 |
21 | HUPOND Thierry | 65 |
22 | COPPEL Jérôme | 64 |