Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Démare
1
76 kgColbrelli
2
74 kgDegenkolb
3
82 kgAlaphilippe
4
62 kgGilbert
5
75 kgKristoff
6
78 kgGallopin
7
69 kgHardy
8
62 kgGroenewegen
9
70 kgLaporte
10
76 kgMartin
11
59 kgBreschel
12
70 kgGreipel
13
80 kgNaesen
14
74 kgChavanel
15
73 kgHaller
16
72 kgHenao
17
61 kgKoren
18
72 kgMolard
19
62 kgWynants
20
74 kgŠiškevičius
21
80 kg
1
76 kgColbrelli
2
74 kgDegenkolb
3
82 kgAlaphilippe
4
62 kgGilbert
5
75 kgKristoff
6
78 kgGallopin
7
69 kgHardy
8
62 kgGroenewegen
9
70 kgLaporte
10
76 kgMartin
11
59 kgBreschel
12
70 kgGreipel
13
80 kgNaesen
14
74 kgChavanel
15
73 kgHaller
16
72 kgHenao
17
61 kgKoren
18
72 kgMolard
19
62 kgWynants
20
74 kgŠiškevičius
21
80 kg
Weight (KG) →
Result →
82
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | COLBRELLI Sonny | 74 |
3 | DEGENKOLB John | 82 |
4 | ALAPHILIPPE Julian | 62 |
5 | GILBERT Philippe | 75 |
6 | KRISTOFF Alexander | 78 |
7 | GALLOPIN Tony | 69 |
8 | HARDY Romain | 62 |
9 | GROENEWEGEN Dylan | 70 |
10 | LAPORTE Christophe | 76 |
11 | MARTIN Dan | 59 |
12 | BRESCHEL Matti | 70 |
13 | GREIPEL André | 80 |
14 | NAESEN Oliver | 74 |
15 | CHAVANEL Sylvain | 73 |
16 | HALLER Marco | 72 |
17 | HENAO Sergio | 61 |
18 | KOREN Kristijan | 72 |
19 | MOLARD Rudy | 62 |
20 | WYNANTS Maarten | 74 |
21 | ŠIŠKEVIČIUS Evaldas | 80 |