Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Démare
1
76 kgGroenewegen
2
70 kgIzagirre
3
66 kgViviani
4
67 kgTeunissen
5
73 kgLaporte
6
76 kgGreipel
7
80 kgAlaphilippe
8
62 kgWellens
9
71 kgBauhaus
10
75 kgRoelandts
11
78 kgKonrad
12
64 kgKristoff
13
78 kgRolland
14
70 kgMachado
15
63 kgTeuns
16
64 kgDrucker
17
75 kgDegenkolb
18
82 kgBoaro
19
64 kgTrentin
20
74 kgPérichon
21
69 kgIzagirre
22
60 kgGarcía Cortina
23
77 kg
1
76 kgGroenewegen
2
70 kgIzagirre
3
66 kgViviani
4
67 kgTeunissen
5
73 kgLaporte
6
76 kgGreipel
7
80 kgAlaphilippe
8
62 kgWellens
9
71 kgBauhaus
10
75 kgRoelandts
11
78 kgKonrad
12
64 kgKristoff
13
78 kgRolland
14
70 kgMachado
15
63 kgTeuns
16
64 kgDrucker
17
75 kgDegenkolb
18
82 kgBoaro
19
64 kgTrentin
20
74 kgPérichon
21
69 kgIzagirre
22
60 kgGarcía Cortina
23
77 kg
Weight (KG) →
Result →
82
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | GROENEWEGEN Dylan | 70 |
3 | IZAGIRRE Gorka | 66 |
4 | VIVIANI Elia | 67 |
5 | TEUNISSEN Mike | 73 |
6 | LAPORTE Christophe | 76 |
7 | GREIPEL André | 80 |
8 | ALAPHILIPPE Julian | 62 |
9 | WELLENS Tim | 71 |
10 | BAUHAUS Phil | 75 |
11 | ROELANDTS Jürgen | 78 |
12 | KONRAD Patrick | 64 |
13 | KRISTOFF Alexander | 78 |
14 | ROLLAND Pierre | 70 |
15 | MACHADO Tiago | 63 |
16 | TEUNS Dylan | 64 |
17 | DRUCKER Jempy | 75 |
18 | DEGENKOLB John | 82 |
19 | BOARO Manuele | 64 |
20 | TRENTIN Matteo | 74 |
21 | PÉRICHON Pierre-Luc | 69 |
22 | IZAGIRRE Ion | 60 |
23 | GARCÍA CORTINA Iván | 77 |