Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Groenewegen
1
70 kgKwiatkowski
2
68 kgSánchez
3
73 kgTrentin
4
74 kgGarcía Cortina
5
77 kgEwan
6
69 kgGilbert
7
75 kgJakobsen
8
78 kgDémare
9
76 kgBennett
10
73 kgDegenkolb
11
82 kgBernal
12
60 kgGallopin
13
69 kgColbrelli
14
74 kgMolard
15
62 kgBardet
16
65 kgGreipel
17
80 kgCoquard
18
59 kgNaesen
19
74 kgTurgis
20
70 kgTeunissen
21
73 kgJungels
22
70 kgDeclercq
23
78 kg
1
70 kgKwiatkowski
2
68 kgSánchez
3
73 kgTrentin
4
74 kgGarcía Cortina
5
77 kgEwan
6
69 kgGilbert
7
75 kgJakobsen
8
78 kgDémare
9
76 kgBennett
10
73 kgDegenkolb
11
82 kgBernal
12
60 kgGallopin
13
69 kgColbrelli
14
74 kgMolard
15
62 kgBardet
16
65 kgGreipel
17
80 kgCoquard
18
59 kgNaesen
19
74 kgTurgis
20
70 kgTeunissen
21
73 kgJungels
22
70 kgDeclercq
23
78 kg
Weight (KG) →
Result →
82
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GROENEWEGEN Dylan | 70 |
2 | KWIATKOWSKI Michał | 68 |
3 | SÁNCHEZ Luis León | 73 |
4 | TRENTIN Matteo | 74 |
5 | GARCÍA CORTINA Iván | 77 |
6 | EWAN Caleb | 69 |
7 | GILBERT Philippe | 75 |
8 | JAKOBSEN Fabio | 78 |
9 | DÉMARE Arnaud | 76 |
10 | BENNETT Sam | 73 |
11 | DEGENKOLB John | 82 |
12 | BERNAL Egan | 60 |
13 | GALLOPIN Tony | 69 |
14 | COLBRELLI Sonny | 74 |
15 | MOLARD Rudy | 62 |
16 | BARDET Romain | 65 |
17 | GREIPEL André | 80 |
18 | COQUARD Bryan | 59 |
19 | NAESEN Oliver | 74 |
20 | TURGIS Anthony | 70 |
21 | TEUNISSEN Mike | 73 |
22 | JUNGELS Bob | 70 |
23 | DECLERCQ Tim | 78 |