Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bennett
1
73 kgPedersen
2
76 kgMatthews
3
72 kgBol
4
83 kgCoquard
5
59 kgDémare
6
76 kgAckermann
7
78 kgPhilipsen
8
75 kgBauhaus
9
75 kgGreipel
10
80 kgDegenkolb
11
82 kgDoubey
12
62 kgLaporte
13
76 kgBenoot
14
72 kgVermeersch
15
81 kgBarbier
16
79 kgStuyven
17
78 kgSwift
18
69 kgPolitt
19
80 kgLampaert
20
75 kgMühlberger
21
64 kg
1
73 kgPedersen
2
76 kgMatthews
3
72 kgBol
4
83 kgCoquard
5
59 kgDémare
6
76 kgAckermann
7
78 kgPhilipsen
8
75 kgBauhaus
9
75 kgGreipel
10
80 kgDegenkolb
11
82 kgDoubey
12
62 kgLaporte
13
76 kgBenoot
14
72 kgVermeersch
15
81 kgBarbier
16
79 kgStuyven
17
78 kgSwift
18
69 kgPolitt
19
80 kgLampaert
20
75 kgMühlberger
21
64 kg
Weight (KG) →
Result →
83
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BENNETT Sam | 73 |
2 | PEDERSEN Mads | 76 |
3 | MATTHEWS Michael | 72 |
4 | BOL Cees | 83 |
5 | COQUARD Bryan | 59 |
6 | DÉMARE Arnaud | 76 |
7 | ACKERMANN Pascal | 78 |
8 | PHILIPSEN Jasper | 75 |
9 | BAUHAUS Phil | 75 |
10 | GREIPEL André | 80 |
11 | DEGENKOLB John | 82 |
12 | DOUBEY Fabien | 62 |
13 | LAPORTE Christophe | 76 |
14 | BENOOT Tiesj | 72 |
15 | VERMEERSCH Florian | 81 |
16 | BARBIER Rudy | 79 |
17 | STUYVEN Jasper | 78 |
18 | SWIFT Ben | 69 |
19 | POLITT Nils | 80 |
20 | LAMPAERT Yves | 75 |
21 | MÜHLBERGER Gregor | 64 |