Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Laporte
1
76 kgvan Aert
2
78 kgJakobsen
3
78 kgRoglič
4
65 kgPedersen
5
76 kgLatour
6
66 kgMezgec
7
72 kgFedorov
8
80 kgGougeard
9
70 kgStuyven
10
78 kgGirmay
11
70 kgMozzato
12
67 kgGarcía Cortina
13
77 kgMolano
14
72 kgWright
15
75 kgFrison
16
84 kgNaesen
17
74 kgGilbert
18
75 kgPhilipsen
19
75 kgŠtybar
20
68 kgSénéchal
21
77 kgHolmes
22
67 kgBol
23
83 kg
1
76 kgvan Aert
2
78 kgJakobsen
3
78 kgRoglič
4
65 kgPedersen
5
76 kgLatour
6
66 kgMezgec
7
72 kgFedorov
8
80 kgGougeard
9
70 kgStuyven
10
78 kgGirmay
11
70 kgMozzato
12
67 kgGarcía Cortina
13
77 kgMolano
14
72 kgWright
15
75 kgFrison
16
84 kgNaesen
17
74 kgGilbert
18
75 kgPhilipsen
19
75 kgŠtybar
20
68 kgSénéchal
21
77 kgHolmes
22
67 kgBol
23
83 kg
Weight (KG) →
Result →
84
65
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LAPORTE Christophe | 76 |
2 | VAN AERT Wout | 78 |
3 | JAKOBSEN Fabio | 78 |
4 | ROGLIČ Primož | 65 |
5 | PEDERSEN Mads | 76 |
6 | LATOUR Pierre | 66 |
7 | MEZGEC Luka | 72 |
8 | FEDOROV Yevgeniy | 80 |
9 | GOUGEARD Alexis | 70 |
10 | STUYVEN Jasper | 78 |
11 | GIRMAY Biniam | 70 |
12 | MOZZATO Luca | 67 |
13 | GARCÍA CORTINA Iván | 77 |
14 | MOLANO Juan Sebastián | 72 |
15 | WRIGHT Fred | 75 |
16 | FRISON Frederik | 84 |
17 | NAESEN Oliver | 74 |
18 | GILBERT Philippe | 75 |
19 | PHILIPSEN Jasper | 75 |
20 | ŠTYBAR Zdeněk | 68 |
21 | SÉNÉCHAL Florian | 77 |
22 | HOLMES Matthew | 67 |
23 | BOL Cees | 83 |