Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Madouas
1
71 kgvan Aert
2
78 kgRoglič
3
65 kgYates
4
58 kgPacher
5
62 kgMcNulty
6
69 kgMartínez
7
63 kgKoretzky
8
69 kgDoull
9
71 kgBurgaudeau
10
61 kgQuintana
11
58 kgBonnamour
12
70 kgDenz
13
71 kgFraile
14
72 kgvan Baarle
15
78 kgvan den Berg
16
78 kgFrison
17
84 kgAlmeida
18
63 kgLatour
19
66 kgPoels
20
66 kgMollema
21
64 kgStuyven
22
78 kgPichon
23
69 kgLeysen
24
78 kg
1
71 kgvan Aert
2
78 kgRoglič
3
65 kgYates
4
58 kgPacher
5
62 kgMcNulty
6
69 kgMartínez
7
63 kgKoretzky
8
69 kgDoull
9
71 kgBurgaudeau
10
61 kgQuintana
11
58 kgBonnamour
12
70 kgDenz
13
71 kgFraile
14
72 kgvan Baarle
15
78 kgvan den Berg
16
78 kgFrison
17
84 kgAlmeida
18
63 kgLatour
19
66 kgPoels
20
66 kgMollema
21
64 kgStuyven
22
78 kgPichon
23
69 kgLeysen
24
78 kg
Weight (KG) →
Result →
84
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | MADOUAS Valentin | 71 |
2 | VAN AERT Wout | 78 |
3 | ROGLIČ Primož | 65 |
4 | YATES Simon | 58 |
5 | PACHER Quentin | 62 |
6 | MCNULTY Brandon | 69 |
7 | MARTÍNEZ Daniel Felipe | 63 |
8 | KORETZKY Victor | 69 |
9 | DOULL Owain | 71 |
10 | BURGAUDEAU Mathieu | 61 |
11 | QUINTANA Nairo | 58 |
12 | BONNAMOUR Franck | 70 |
13 | DENZ Nico | 71 |
14 | FRAILE Omar | 72 |
15 | VAN BAARLE Dylan | 78 |
16 | VAN DEN BERG Julius | 78 |
17 | FRISON Frederik | 84 |
18 | ALMEIDA João | 63 |
19 | LATOUR Pierre | 66 |
20 | POELS Wout | 66 |
21 | MOLLEMA Bauke | 64 |
22 | STUYVEN Jasper | 78 |
23 | PICHON Laurent | 69 |
24 | LEYSEN Senne | 78 |