Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Pedersen
1
76 kgKooij
2
72 kgMerlier
3
76 kgMatthews
4
72 kgPogačar
5
66 kgBennett
6
73 kgCort
7
68 kgMcLay
8
72 kgDe Lie
9
78 kgTaminiaux
10
74 kgLatour
11
66 kgCoquard
12
59 kgvan den Berg
13
73 kgBol
14
83 kgGarcía Cortina
15
77 kgVan Hooydonck
16
78 kgDémare
17
76 kgGodon
18
74 kgGroves
19
76 kgRenard
20
74 kgWærenskjold
21
92 kg
1
76 kgKooij
2
72 kgMerlier
3
76 kgMatthews
4
72 kgPogačar
5
66 kgBennett
6
73 kgCort
7
68 kgMcLay
8
72 kgDe Lie
9
78 kgTaminiaux
10
74 kgLatour
11
66 kgCoquard
12
59 kgvan den Berg
13
73 kgBol
14
83 kgGarcía Cortina
15
77 kgVan Hooydonck
16
78 kgDémare
17
76 kgGodon
18
74 kgGroves
19
76 kgRenard
20
74 kgWærenskjold
21
92 kg
Weight (KG) →
Result →
92
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | KOOIJ Olav | 72 |
3 | MERLIER Tim | 76 |
4 | MATTHEWS Michael | 72 |
5 | POGAČAR Tadej | 66 |
6 | BENNETT Sam | 73 |
7 | CORT Magnus | 68 |
8 | MCLAY Daniel | 72 |
9 | DE LIE Arnaud | 78 |
10 | TAMINIAUX Lionel | 74 |
11 | LATOUR Pierre | 66 |
12 | COQUARD Bryan | 59 |
13 | VAN DEN BERG Marijn | 73 |
14 | BOL Cees | 83 |
15 | GARCÍA CORTINA Iván | 77 |
16 | VAN HOOYDONCK Nathan | 78 |
17 | DÉMARE Arnaud | 76 |
18 | GODON Dorian | 74 |
19 | GROVES Kaden | 76 |
20 | RENARD Alexis | 74 |
21 | WÆRENSKJOLD Søren | 92 |