Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Pithie
1
74 kgPedersen
2
76 kgvan Poppel
3
82 kgKooij
4
72 kgde Kleijn
5
68 kgGroenewegen
6
70 kgEekhoff
7
75 kgMihkels
8
75 kgThijssen
9
74 kgMatthews
10
72 kgSkjelmose
11
65 kgBennett
12
73 kgTrentin
13
74 kgVan Gestel
14
74 kgJorgenson
15
69 kgAckermann
17
78 kgEvenepoel
18
61 kgSobrero
19
63 kgGroves
20
76 kgBernal
21
60 kg
1
74 kgPedersen
2
76 kgvan Poppel
3
82 kgKooij
4
72 kgde Kleijn
5
68 kgGroenewegen
6
70 kgEekhoff
7
75 kgMihkels
8
75 kgThijssen
9
74 kgMatthews
10
72 kgSkjelmose
11
65 kgBennett
12
73 kgTrentin
13
74 kgVan Gestel
14
74 kgJorgenson
15
69 kgAckermann
17
78 kgEvenepoel
18
61 kgSobrero
19
63 kgGroves
20
76 kgBernal
21
60 kg
Weight (KG) →
Result →
82
60
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | PITHIE Laurence | 74 |
2 | PEDERSEN Mads | 76 |
3 | VAN POPPEL Danny | 82 |
4 | KOOIJ Olav | 72 |
5 | DE KLEIJN Arvid | 68 |
6 | GROENEWEGEN Dylan | 70 |
7 | EEKHOFF Nils | 75 |
8 | MIHKELS Madis | 75 |
9 | THIJSSEN Gerben | 74 |
10 | MATTHEWS Michael | 72 |
11 | SKJELMOSE Mattias | 65 |
12 | BENNETT Sam | 73 |
13 | TRENTIN Matteo | 74 |
14 | VAN GESTEL Dries | 74 |
15 | JORGENSON Matteo | 69 |
17 | ACKERMANN Pascal | 78 |
18 | EVENEPOEL Remco | 61 |
19 | SOBRERO Matteo | 63 |
20 | GROVES Kaden | 76 |
21 | BERNAL Egan | 60 |