Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Evenepoel
1
61 kgSkjelmose
2
65 kgJorgenson
3
69 kgPedersen
4
70 kgPithie
5
74 kgvan Poppel
6
82 kgVlasov
7
68 kgMcNulty
8
69 kgTrentin
9
74 kgBernal
10
60 kgRoglič
11
65 kgPlapp
13
72 kgGall
14
66 kgTejada
15
63 kgParet-Peintre
16
64 kgKelderman
17
65 kgVan Wilder
18
64 kgSobrero
19
63 kgNorsgaard
20
88 kgRajović
21
74 kgBattistella
22
67 kgStorer
23
63 kgEenkhoorn
24
72 kg
1
61 kgSkjelmose
2
65 kgJorgenson
3
69 kgPedersen
4
70 kgPithie
5
74 kgvan Poppel
6
82 kgVlasov
7
68 kgMcNulty
8
69 kgTrentin
9
74 kgBernal
10
60 kgRoglič
11
65 kgPlapp
13
72 kgGall
14
66 kgTejada
15
63 kgParet-Peintre
16
64 kgKelderman
17
65 kgVan Wilder
18
64 kgSobrero
19
63 kgNorsgaard
20
88 kgRajović
21
74 kgBattistella
22
67 kgStorer
23
63 kgEenkhoorn
24
72 kg
Weight (KG) →
Result →
88
60
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | SKJELMOSE Mattias | 65 |
3 | JORGENSON Matteo | 69 |
4 | PEDERSEN Mads | 70 |
5 | PITHIE Laurence | 74 |
6 | VAN POPPEL Danny | 82 |
7 | VLASOV Aleksandr | 68 |
8 | MCNULTY Brandon | 69 |
9 | TRENTIN Matteo | 74 |
10 | BERNAL Egan | 60 |
11 | ROGLIČ Primož | 65 |
13 | PLAPP Luke | 72 |
14 | GALL Felix | 66 |
15 | TEJADA Harold | 63 |
16 | PARET-PEINTRE Aurélien | 64 |
17 | KELDERMAN Wilco | 65 |
18 | VAN WILDER Ilan | 64 |
19 | SOBRERO Matteo | 63 |
20 | NORSGAARD Mathias | 88 |
21 | RAJOVIĆ Dušan | 74 |
22 | BATTISTELLA Samuele | 67 |
23 | STORER Michael | 63 |
24 | EENKHOORN Pascal | 72 |