Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 29
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Jorgenson
1
69 kgEvenepoel
2
61 kgSkjelmose
3
65 kgPlapp
4
72 kgCostiou
5
64 kgVan Wilder
6
64 kgRodríguez
7
67 kgBarrenetxea
8
74 kgJegat
9
59 kgFisher-Black
10
69 kgTarling
11
78 kgWright
12
75 kgTurner
13
74 kgPithie
14
74 kgLeemreize
15
66 kgvan Dijke
16
74 kgKluckers
17
71 kgvan Dijke
18
74 kgWatson
19
68 kgBallerstedt
20
76 kg
1
69 kgEvenepoel
2
61 kgSkjelmose
3
65 kgPlapp
4
72 kgCostiou
5
64 kgVan Wilder
6
64 kgRodríguez
7
67 kgBarrenetxea
8
74 kgJegat
9
59 kgFisher-Black
10
69 kgTarling
11
78 kgWright
12
75 kgTurner
13
74 kgPithie
14
74 kgLeemreize
15
66 kgvan Dijke
16
74 kgKluckers
17
71 kgvan Dijke
18
74 kgWatson
19
68 kgBallerstedt
20
76 kg
Weight (KG) →
Result →
78
59
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | JORGENSON Matteo | 69 |
2 | EVENEPOEL Remco | 61 |
3 | SKJELMOSE Mattias | 65 |
4 | PLAPP Luke | 72 |
5 | COSTIOU Ewen | 64 |
6 | VAN WILDER Ilan | 64 |
7 | RODRÍGUEZ Carlos | 67 |
8 | BARRENETXEA Jon | 74 |
9 | JEGAT Jordan | 59 |
10 | FISHER-BLACK Finn | 69 |
11 | TARLING Joshua | 78 |
12 | WRIGHT Fred | 75 |
13 | TURNER Ben | 74 |
14 | PITHIE Laurence | 74 |
15 | LEEMREIZE Gijs | 66 |
16 | VAN DIJKE Tim | 74 |
17 | KLUCKERS Arthur | 71 |
18 | VAN DIJKE Mick | 74 |
19 | WATSON Samuel | 68 |
20 | BALLERSTEDT Maurice | 76 |