Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Thomas
1
71 kgStannard
2
83 kgŠpilak
4
68 kgVantomme
5
63 kgBaugnies
7
69 kgGautier
13
65 kgVanspeybrouck
17
76 kgvan Genechten
23
67 kgVan Melsen
25
77 kgRossetto
30
68 kgMoberg Jørgensen
33
73 kgNolf
39
68 kgVan Schelven
41
68 kgDufrasne
44
70 kgStauff
45
82 kgRuijgh
50
64 kgSteensen
60
65 kgGourgue
86
62 kg
1
71 kgStannard
2
83 kgŠpilak
4
68 kgVantomme
5
63 kgBaugnies
7
69 kgGautier
13
65 kgVanspeybrouck
17
76 kgvan Genechten
23
67 kgVan Melsen
25
77 kgRossetto
30
68 kgMoberg Jørgensen
33
73 kgNolf
39
68 kgVan Schelven
41
68 kgDufrasne
44
70 kgStauff
45
82 kgRuijgh
50
64 kgSteensen
60
65 kgGourgue
86
62 kg
Weight (KG) →
Result →
83
62
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | THOMAS Geraint | 71 |
2 | STANNARD Ian | 83 |
4 | ŠPILAK Simon | 68 |
5 | VANTOMME Maxime | 63 |
7 | BAUGNIES Jérôme | 69 |
13 | GAUTIER Cyril | 65 |
17 | VANSPEYBROUCK Pieter | 76 |
23 | VAN GENECHTEN Jonas | 67 |
25 | VAN MELSEN Kévin | 77 |
30 | ROSSETTO Stéphane | 68 |
33 | MOBERG JØRGENSEN Christian | 73 |
39 | NOLF Frederiek | 68 |
41 | VAN SCHELVEN Jeroen | 68 |
44 | DUFRASNE Jonathan | 70 |
45 | STAUFF Andreas | 82 |
50 | RUIJGH Rob | 64 |
60 | STEENSEN André | 65 |
86 | GOURGUE Benjamin | 62 |