Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Fenn
1
79 kgSagan
2
78 kgMarkus
6
75 kgVanbilsen
7
73 kgVereecken
10
72 kgLechuga
12
67 kgRowsell
13
66 kgLander
16
70 kgImhof
18
80 kgZubov
20
72 kgVermote
21
74 kgRowe
22
72 kgDémare
24
76 kgTatarinov
25
67 kgLe Bon
32
70 kgKoning
33
77 kgGuillemois
40
66 kgBreyne
44
83 kg
1
79 kgSagan
2
78 kgMarkus
6
75 kgVanbilsen
7
73 kgVereecken
10
72 kgLechuga
12
67 kgRowsell
13
66 kgLander
16
70 kgImhof
18
80 kgZubov
20
72 kgVermote
21
74 kgRowe
22
72 kgDémare
24
76 kgTatarinov
25
67 kgLe Bon
32
70 kgKoning
33
77 kgGuillemois
40
66 kgBreyne
44
83 kg
Weight (KG) →
Result →
83
66
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | FENN Andrew | 79 |
2 | SAGAN Peter | 78 |
6 | MARKUS Barry | 75 |
7 | VANBILSEN Kenneth | 73 |
10 | VEREECKEN Nicolas | 72 |
12 | LECHUGA Pablo | 67 |
13 | ROWSELL Erick | 66 |
16 | LANDER Sebastian | 70 |
18 | IMHOF Claudio | 80 |
20 | ZUBOV Matvey | 72 |
21 | VERMOTE Alphonse | 74 |
22 | ROWE Luke | 72 |
24 | DÉMARE Arnaud | 76 |
25 | TATARINOV Gennadiy | 67 |
32 | LE BON Johan | 70 |
33 | KONING Peter | 77 |
40 | GUILLEMOIS Romain | 66 |
44 | BREYNE Jonathan | 83 |