Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Omrzel
1
62 kgVan den Broek
3
69 kgSchoofs
6
68 kgBarry
7
77 kgFietzke
8
60 kgÁlvarez
9
74 kgSparfel
10
59 kgGrindley
11
72 kgRemijn
13
68 kgSolen
23
67 kgGrégoire
25
65 kgHobolth
32
71 kgMolenaar
33
68 kgMartinet
36
66 kgSchaper
40
69 kgBoucher
50
67 kgØrn-Kristoff
52
76 kgVerstraete
54
59 kgCubillas
66
62 kg
1
62 kgVan den Broek
3
69 kgSchoofs
6
68 kgBarry
7
77 kgFietzke
8
60 kgÁlvarez
9
74 kgSparfel
10
59 kgGrindley
11
72 kgRemijn
13
68 kgSolen
23
67 kgGrégoire
25
65 kgHobolth
32
71 kgMolenaar
33
68 kgMartinet
36
66 kgSchaper
40
69 kgBoucher
50
67 kgØrn-Kristoff
52
76 kgVerstraete
54
59 kgCubillas
66
62 kg
Weight (KG) →
Result →
77
59
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | OMRZEL Jakob | 62 |
3 | VAN DEN BROEK Axel | 69 |
6 | SCHOOFS Jasper | 68 |
7 | BARRY Ashlin | 77 |
8 | FIETZKE Paul | 60 |
9 | ÁLVAREZ Héctor | 74 |
10 | SPARFEL Aubin | 59 |
11 | GRINDLEY Sebastian | 72 |
13 | REMIJN Senna | 68 |
23 | SOLEN Keije | 67 |
25 | GRÉGOIRE Baptiste | 65 |
32 | HOBOLTH Marius | 71 |
33 | MOLENAAR Ko | 68 |
36 | MARTINET Valentin | 66 |
40 | SCHAPER Joeri | 69 |
50 | BOUCHER Hugo | 67 |
52 | ØRN-KRISTOFF Felix | 76 |
54 | VERSTRAETE Jenthe | 59 |
66 | CUBILLAS Javier | 62 |