Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Raas
1
72 kgPlanckaert
5
69 kgDe Vlaeminck
6
74 kgSergeant
7
76 kgHinault
9
62 kgMoser
10
79 kgKelly
12
77 kgDe Wolf
13
75 kgKuiper
15
69 kgRoche
17
74 kgDuclos-Lassalle
20
73 kgPrim
26
76 kgThaler
27
60 kgHoste
30
76 kgDe Wilde
31
70 kgvan der Poel
32
70 kgDemol
33
72 kgMadiot
35
68 kg
1
72 kgPlanckaert
5
69 kgDe Vlaeminck
6
74 kgSergeant
7
76 kgHinault
9
62 kgMoser
10
79 kgKelly
12
77 kgDe Wolf
13
75 kgKuiper
15
69 kgRoche
17
74 kgDuclos-Lassalle
20
73 kgPrim
26
76 kgThaler
27
60 kgHoste
30
76 kgDe Wilde
31
70 kgvan der Poel
32
70 kgDemol
33
72 kgMadiot
35
68 kg
Weight (KG) →
Result →
79
60
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | RAAS Jan | 72 |
5 | PLANCKAERT Eddy | 69 |
6 | DE VLAEMINCK Roger | 74 |
7 | SERGEANT Marc | 76 |
9 | HINAULT Bernard | 62 |
10 | MOSER Francesco | 79 |
12 | KELLY Sean | 77 |
13 | DE WOLF Fons | 75 |
15 | KUIPER Hennie | 69 |
17 | ROCHE Stephen | 74 |
20 | DUCLOS-LASSALLE Gilbert | 73 |
26 | PRIM Tommy | 76 |
27 | THALER Klaus-Peter | 60 |
30 | HOSTE Frank | 76 |
31 | DE WILDE Etienne | 70 |
32 | VAN DER POEL Adrie | 70 |
33 | DEMOL Dirk | 72 |
35 | MADIOT Marc | 68 |