Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Vanderaerden
1
74 kgSergeant
7
76 kgGayant
10
69 kgKuiper
11
69 kgDe Wilde
12
70 kgKelly
13
77 kgPlanckaert
16
69 kgDuclos-Lassalle
17
73 kgMoser
19
79 kgMarie
21
68 kgde Rooij
25
69 kgWampers
26
82 kgMadiot
27
68 kgHoste
28
76 kgGlaus
31
67 kgIlegems
34
74 kgSolleveld
36
93 kgvan der Poel
37
70 kg
1
74 kgSergeant
7
76 kgGayant
10
69 kgKuiper
11
69 kgDe Wilde
12
70 kgKelly
13
77 kgPlanckaert
16
69 kgDuclos-Lassalle
17
73 kgMoser
19
79 kgMarie
21
68 kgde Rooij
25
69 kgWampers
26
82 kgMadiot
27
68 kgHoste
28
76 kgGlaus
31
67 kgIlegems
34
74 kgSolleveld
36
93 kgvan der Poel
37
70 kg
Weight (KG) →
Result →
93
67
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VANDERAERDEN Eric | 74 |
7 | SERGEANT Marc | 76 |
10 | GAYANT Martial | 69 |
11 | KUIPER Hennie | 69 |
12 | DE WILDE Etienne | 70 |
13 | KELLY Sean | 77 |
16 | PLANCKAERT Eddy | 69 |
17 | DUCLOS-LASSALLE Gilbert | 73 |
19 | MOSER Francesco | 79 |
21 | MARIE Thierry | 68 |
25 | DE ROOIJ Theo | 69 |
26 | WAMPERS Jean-Marie | 82 |
27 | MADIOT Marc | 68 |
28 | HOSTE Frank | 76 |
31 | GLAUS Gilbert | 67 |
34 | ILEGEMS Roger | 74 |
36 | SOLLEVELD Gerrit | 93 |
37 | VAN DER POEL Adrie | 70 |