Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Demol
1
72 kgFignon
3
67 kgSergeant
5
76 kgBauer
8
72 kgPlanckaert
15
69 kgKelly
16
77 kgFondriest
17
70 kgvan der Poel
18
70 kgHoste
22
76 kgDe Wolf
27
75 kgRué
31
74 kgMadiot
40
68 kgPieters
44
82 kgVanderaerden
49
74 kgMarie
53
68 kgYates
56
74 kgIlegems
61
74 kgNijdam
73
70 kg
1
72 kgFignon
3
67 kgSergeant
5
76 kgBauer
8
72 kgPlanckaert
15
69 kgKelly
16
77 kgFondriest
17
70 kgvan der Poel
18
70 kgHoste
22
76 kgDe Wolf
27
75 kgRué
31
74 kgMadiot
40
68 kgPieters
44
82 kgVanderaerden
49
74 kgMarie
53
68 kgYates
56
74 kgIlegems
61
74 kgNijdam
73
70 kg
Weight (KG) →
Result →
82
67
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | DEMOL Dirk | 72 |
3 | FIGNON Laurent | 67 |
5 | SERGEANT Marc | 76 |
8 | BAUER Steve | 72 |
15 | PLANCKAERT Eddy | 69 |
16 | KELLY Sean | 77 |
17 | FONDRIEST Maurizio | 70 |
18 | VAN DER POEL Adrie | 70 |
22 | HOSTE Frank | 76 |
27 | DE WOLF Fons | 75 |
31 | RUÉ Gérard | 74 |
40 | MADIOT Marc | 68 |
44 | PIETERS Peter | 82 |
49 | VANDERAERDEN Eric | 74 |
53 | MARIE Thierry | 68 |
56 | YATES Sean | 74 |
61 | ILEGEMS Roger | 74 |
73 | NIJDAM Jelle | 70 |