Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Wampers
1
82 kgDuclos-Lassalle
4
73 kgPlanckaert
5
69 kgMadiot
6
68 kgDe Wilde
14
70 kgKelly
15
77 kgvan der Poel
18
70 kgIlegems
24
74 kgVanderaerden
25
74 kgChiappucci
28
67 kgMarie
29
68 kgCenghialta
30
73 kgBallerini
34
78 kgBomans
35
74 kgPeeters
41
76 kgGianetti
44
62 kgNijdam
56
70 kg
1
82 kgDuclos-Lassalle
4
73 kgPlanckaert
5
69 kgMadiot
6
68 kgDe Wilde
14
70 kgKelly
15
77 kgvan der Poel
18
70 kgIlegems
24
74 kgVanderaerden
25
74 kgChiappucci
28
67 kgMarie
29
68 kgCenghialta
30
73 kgBallerini
34
78 kgBomans
35
74 kgPeeters
41
76 kgGianetti
44
62 kgNijdam
56
70 kg
Weight (KG) →
Result →
82
62
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | WAMPERS Jean-Marie | 82 |
4 | DUCLOS-LASSALLE Gilbert | 73 |
5 | PLANCKAERT Eddy | 69 |
6 | MADIOT Marc | 68 |
14 | DE WILDE Etienne | 70 |
15 | KELLY Sean | 77 |
18 | VAN DER POEL Adrie | 70 |
24 | ILEGEMS Roger | 74 |
25 | VANDERAERDEN Eric | 74 |
28 | CHIAPPUCCI Claudio | 67 |
29 | MARIE Thierry | 68 |
30 | CENGHIALTA Bruno | 73 |
34 | BALLERINI Franco | 78 |
35 | BOMANS Carlo | 74 |
41 | PEETERS Wilfried | 76 |
44 | GIANETTI Mauro | 62 |
56 | NIJDAM Jelle | 70 |