Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
van der Poel
2
70 kgRaas
3
72 kgLeMond
4
67 kgWampers
6
82 kgRoche
7
74 kgKelly
9
77 kgvan Vliet
11
65 kgHoste
13
76 kgKuiper
16
69 kgGlaus
17
67 kgGayant
18
69 kgDe Wilde
21
70 kgZoetemelk
24
68 kgArgentin
25
66 kgMadiot
27
68 kgFignon
30
67 kgPriem
31
75 kgPrim
33
76 kgde Rooij
41
69 kg
2
70 kgRaas
3
72 kgLeMond
4
67 kgWampers
6
82 kgRoche
7
74 kgKelly
9
77 kgvan Vliet
11
65 kgHoste
13
76 kgKuiper
16
69 kgGlaus
17
67 kgGayant
18
69 kgDe Wilde
21
70 kgZoetemelk
24
68 kgArgentin
25
66 kgMadiot
27
68 kgFignon
30
67 kgPriem
31
75 kgPrim
33
76 kgde Rooij
41
69 kg
Weight (KG) →
Result →
82
65
2
41
# | Rider | Weight (KG) |
---|---|---|
2 | VAN DER POEL Adrie | 70 |
3 | RAAS Jan | 72 |
4 | LEMOND Greg | 67 |
6 | WAMPERS Jean-Marie | 82 |
7 | ROCHE Stephen | 74 |
9 | KELLY Sean | 77 |
11 | VAN VLIET Leo | 65 |
13 | HOSTE Frank | 76 |
16 | KUIPER Hennie | 69 |
17 | GLAUS Gilbert | 67 |
18 | GAYANT Martial | 69 |
21 | DE WILDE Etienne | 70 |
24 | ZOETEMELK Joop | 68 |
25 | ARGENTIN Moreno | 66 |
27 | MADIOT Marc | 68 |
30 | FIGNON Laurent | 67 |
31 | PRIEM Cees | 75 |
33 | PRIM Tommy | 76 |
41 | DE ROOIJ Theo | 69 |