Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 101
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Kelly
1
77 kgGavazzi
4
67 kgDuclos-Lassalle
6
73 kgDe Wilde
7
70 kgde Rooij
14
69 kgRoche
18
74 kgChevallier
19
69 kgKuiper
23
69 kgHinault
28
62 kgRaas
30
72 kgZoetemelk
41
68 kgGayant
50
69 kgBittinger
51
69 kgvan der Poel
52
70 kgGlaus
53
67 kgVanderaerden
65
74 kgWampers
67
82 kgPriem
84
75 kgSolleveld
86
93 kgHeirweg
87
73 kgDemol
91
72 kg
1
77 kgGavazzi
4
67 kgDuclos-Lassalle
6
73 kgDe Wilde
7
70 kgde Rooij
14
69 kgRoche
18
74 kgChevallier
19
69 kgKuiper
23
69 kgHinault
28
62 kgRaas
30
72 kgZoetemelk
41
68 kgGayant
50
69 kgBittinger
51
69 kgvan der Poel
52
70 kgGlaus
53
67 kgVanderaerden
65
74 kgWampers
67
82 kgPriem
84
75 kgSolleveld
86
93 kgHeirweg
87
73 kgDemol
91
72 kg
Weight (KG) →
Result →
93
62
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
4 | GAVAZZI Pierino | 67 |
6 | DUCLOS-LASSALLE Gilbert | 73 |
7 | DE WILDE Etienne | 70 |
14 | DE ROOIJ Theo | 69 |
18 | ROCHE Stephen | 74 |
19 | CHEVALLIER Philippe | 69 |
23 | KUIPER Hennie | 69 |
28 | HINAULT Bernard | 62 |
30 | RAAS Jan | 72 |
41 | ZOETEMELK Joop | 68 |
50 | GAYANT Martial | 69 |
51 | BITTINGER René | 69 |
52 | VAN DER POEL Adrie | 70 |
53 | GLAUS Gilbert | 67 |
65 | VANDERAERDEN Eric | 74 |
67 | WAMPERS Jean-Marie | 82 |
84 | PRIEM Cees | 75 |
86 | SOLLEVELD Gerrit | 93 |
87 | HEIRWEG Dirk | 73 |
91 | DEMOL Dirk | 72 |