Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Argentin
2
66 kgKelly
3
77 kgvan der Poel
6
70 kgvan Vliet
8
65 kgMarie
9
68 kgDernies
18
75 kgVanderaerden
23
74 kgSergeant
28
76 kgWampers
29
82 kgKuiper
31
69 kgPrim
38
76 kgWinnen
39
60 kgZoetemelk
45
68 kgDuclos-Lassalle
46
73 kgDe Wilde
48
70 kgMadiot
49
68 kgChiappucci
55
67 kgPriem
63
75 kgBugno
75
68 kg
2
66 kgKelly
3
77 kgvan der Poel
6
70 kgvan Vliet
8
65 kgMarie
9
68 kgDernies
18
75 kgVanderaerden
23
74 kgSergeant
28
76 kgWampers
29
82 kgKuiper
31
69 kgPrim
38
76 kgWinnen
39
60 kgZoetemelk
45
68 kgDuclos-Lassalle
46
73 kgDe Wilde
48
70 kgMadiot
49
68 kgChiappucci
55
67 kgPriem
63
75 kgBugno
75
68 kg
Weight (KG) →
Result →
82
60
2
75
# | Rider | Weight (KG) |
---|---|---|
2 | ARGENTIN Moreno | 66 |
3 | KELLY Sean | 77 |
6 | VAN DER POEL Adrie | 70 |
8 | VAN VLIET Leo | 65 |
9 | MARIE Thierry | 68 |
18 | DERNIES Michel | 75 |
23 | VANDERAERDEN Eric | 74 |
28 | SERGEANT Marc | 76 |
29 | WAMPERS Jean-Marie | 82 |
31 | KUIPER Hennie | 69 |
38 | PRIM Tommy | 76 |
39 | WINNEN Peter | 60 |
45 | ZOETEMELK Joop | 68 |
46 | DUCLOS-LASSALLE Gilbert | 73 |
48 | DE WILDE Etienne | 70 |
49 | MADIOT Marc | 68 |
55 | CHIAPPUCCI Claudio | 67 |
63 | PRIEM Cees | 75 |
75 | BUGNO Gianni | 68 |