Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -4 * weight + 322
This means that on average for every extra kilogram weight a rider loses -4 positions in the result.
Pieters
1
82 kgKelly
3
77 kgVanderaerden
6
74 kgPeeters
7
76 kgRué
16
74 kgHoste
18
76 kgCenghialta
21
73 kgGayant
22
69 kgvan der Poel
23
70 kgBauer
27
72 kgSørensen
35
70 kgDernies
36
75 kgHodge
43
74 kgGianetti
66
62 kgPedersen
70
70 kgMuseeuw
77
71 kgDemierre
79
70 kg
1
82 kgKelly
3
77 kgVanderaerden
6
74 kgPeeters
7
76 kgRué
16
74 kgHoste
18
76 kgCenghialta
21
73 kgGayant
22
69 kgvan der Poel
23
70 kgBauer
27
72 kgSørensen
35
70 kgDernies
36
75 kgHodge
43
74 kgGianetti
66
62 kgPedersen
70
70 kgMuseeuw
77
71 kgDemierre
79
70 kg
Weight (KG) →
Result →
82
62
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | PIETERS Peter | 82 |
3 | KELLY Sean | 77 |
6 | VANDERAERDEN Eric | 74 |
7 | PEETERS Wilfried | 76 |
16 | RUÉ Gérard | 74 |
18 | HOSTE Frank | 76 |
21 | CENGHIALTA Bruno | 73 |
22 | GAYANT Martial | 69 |
23 | VAN DER POEL Adrie | 70 |
27 | BAUER Steve | 72 |
35 | SØRENSEN Rolf | 70 |
36 | DERNIES Michel | 75 |
43 | HODGE Stephen | 74 |
66 | GIANETTI Mauro | 62 |
70 | PEDERSEN Atle | 70 |
77 | MUSEEUW Johan | 71 |
79 | DEMIERRE Serge | 70 |