Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 40
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Tratnik
5
67 kgKristoff
9
78 kgMurn
11
70 kgKump
12
68 kgMarin
15
67 kgJuul-Jensen
21
73 kgPöll
23
60 kgBerdos
25
68 kgHesselbarth
26
65 kgSzeghalmi
39
66 kgWilmann
50
69 kgLitscher
69
74 kgWestmattelmann
87
75 kgJenkins
92
63 kgMahorič
99
68 kgRogina
100
70 kgBroniš
113
74 kgNordhaug
116
63 kg
5
67 kgKristoff
9
78 kgMurn
11
70 kgKump
12
68 kgMarin
15
67 kgJuul-Jensen
21
73 kgPöll
23
60 kgBerdos
25
68 kgHesselbarth
26
65 kgSzeghalmi
39
66 kgWilmann
50
69 kgLitscher
69
74 kgWestmattelmann
87
75 kgJenkins
92
63 kgMahorič
99
68 kgRogina
100
70 kgBroniš
113
74 kgNordhaug
116
63 kg
Weight (KG) →
Result →
78
60
5
116
# | Rider | Weight (KG) |
---|---|---|
5 | TRATNIK Jan | 67 |
9 | KRISTOFF Alexander | 78 |
11 | MURN Uroš | 70 |
12 | KUMP Marko | 68 |
15 | MARIN Matej | 67 |
21 | JUUL-JENSEN Christopher | 73 |
23 | PÖLL Stefan | 60 |
25 | BERDOS Oleg | 68 |
26 | HESSELBARTH David | 65 |
39 | SZEGHALMI Balint | 66 |
50 | WILMANN Frederik | 69 |
69 | LITSCHER Thomas | 74 |
87 | WESTMATTELMANN Daniel | 75 |
92 | JENKINS Max | 63 |
99 | MAHORIČ Mitja | 68 |
100 | ROGINA Radoslav | 70 |
113 | BRONIŠ Roman | 74 |
116 | NORDHAUG Lars Petter | 63 |