Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.9 * weight + 214
This means that on average for every extra kilogram weight a rider loses -2.9 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgvan Dijk
3
71 kgvan Vleuten
5
59 kgBates
6
69 kgKoedooder
7
69 kgSlappendel
9
67 kgBeltman
11
68 kgDe Vocht
13
61 kgvan den Broek-Blaak
20
64 kgBrammeier
22
60 kgVisser
26
59 kgvan der Breggen
49
56 kgHenrion
52
60 kgBrand
62
57 kgFahlin
66
63 kgKessler
79
60 kgTenniglo
105
64 kg
1
64 kgWild
2
75 kgvan Dijk
3
71 kgvan Vleuten
5
59 kgBates
6
69 kgKoedooder
7
69 kgSlappendel
9
67 kgBeltman
11
68 kgDe Vocht
13
61 kgvan den Broek-Blaak
20
64 kgBrammeier
22
60 kgVisser
26
59 kgvan der Breggen
49
56 kgHenrion
52
60 kgBrand
62
57 kgFahlin
66
63 kgKessler
79
60 kgTenniglo
105
64 kg
Weight (KG) →
Result →
75
56
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
3 | VAN DIJK Ellen | 71 |
5 | VAN VLEUTEN Annemiek | 59 |
6 | BATES Katherine | 69 |
7 | KOEDOODER Vera | 69 |
9 | SLAPPENDEL Iris | 67 |
11 | BELTMAN Chantal | 68 |
13 | DE VOCHT Liesbet | 61 |
20 | VAN DEN BROEK-BLAAK Chantal | 64 |
22 | BRAMMEIER Nikki | 60 |
26 | VISSER Adrie | 59 |
49 | VAN DER BREGGEN Anna | 56 |
52 | HENRION Ludivine | 60 |
62 | BRAND Lucinda | 57 |
66 | FAHLIN Emilia | 63 |
79 | KESSLER Nina | 60 |
105 | TENNIGLO Moniek | 64 |