Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.6 * weight + 257
This means that on average for every extra kilogram weight a rider loses -3.6 positions in the result.
Wild
1
75 kgvan Dijk
2
71 kgTeutenberg
4
64 kgvan Vleuten
5
59 kgBates
7
69 kgSlappendel
8
67 kgKoedooder
9
69 kgDe Vocht
12
61 kgBeltman
13
68 kgvan den Broek-Blaak
21
64 kgBrammeier
23
60 kgVisser
27
59 kgFahlin
45
63 kgTenniglo
57
64 kgvan der Breggen
60
56 kgHenrion
63
60 kgBrand
74
57 kgKessler
109
60 kg
1
75 kgvan Dijk
2
71 kgTeutenberg
4
64 kgvan Vleuten
5
59 kgBates
7
69 kgSlappendel
8
67 kgKoedooder
9
69 kgDe Vocht
12
61 kgBeltman
13
68 kgvan den Broek-Blaak
21
64 kgBrammeier
23
60 kgVisser
27
59 kgFahlin
45
63 kgTenniglo
57
64 kgvan der Breggen
60
56 kgHenrion
63
60 kgBrand
74
57 kgKessler
109
60 kg
Weight (KG) →
Result →
75
56
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | WILD Kirsten | 75 |
2 | VAN DIJK Ellen | 71 |
4 | TEUTENBERG Ina-Yoko | 64 |
5 | VAN VLEUTEN Annemiek | 59 |
7 | BATES Katherine | 69 |
8 | SLAPPENDEL Iris | 67 |
9 | KOEDOODER Vera | 69 |
12 | DE VOCHT Liesbet | 61 |
13 | BELTMAN Chantal | 68 |
21 | VAN DEN BROEK-BLAAK Chantal | 64 |
23 | BRAMMEIER Nikki | 60 |
27 | VISSER Adrie | 59 |
45 | FAHLIN Emilia | 63 |
57 | TENNIGLO Moniek | 64 |
60 | VAN DER BREGGEN Anna | 56 |
63 | HENRION Ludivine | 60 |
74 | BRAND Lucinda | 57 |
109 | KESSLER Nina | 60 |