Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgDe Vocht
10
61 kgvan Vleuten
16
59 kgBrand
19
57 kgvan Dijk
22
71 kgKoedooder
26
69 kgvan der Breggen
33
56 kgHenrion
39
60 kgTenniglo
46
64 kgSlappendel
55
67 kgFahlin
58
63 kgvan den Broek-Blaak
71
64 kgVisser
72
59 kgBrammeier
74
60 kgKessler
80
60 kgBates
83
69 kgBeltman
94
68 kg
1
64 kgWild
2
75 kgDe Vocht
10
61 kgvan Vleuten
16
59 kgBrand
19
57 kgvan Dijk
22
71 kgKoedooder
26
69 kgvan der Breggen
33
56 kgHenrion
39
60 kgTenniglo
46
64 kgSlappendel
55
67 kgFahlin
58
63 kgvan den Broek-Blaak
71
64 kgVisser
72
59 kgBrammeier
74
60 kgKessler
80
60 kgBates
83
69 kgBeltman
94
68 kg
Weight (KG) →
Result →
75
56
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | WILD Kirsten | 75 |
10 | DE VOCHT Liesbet | 61 |
16 | VAN VLEUTEN Annemiek | 59 |
19 | BRAND Lucinda | 57 |
22 | VAN DIJK Ellen | 71 |
26 | KOEDOODER Vera | 69 |
33 | VAN DER BREGGEN Anna | 56 |
39 | HENRION Ludivine | 60 |
46 | TENNIGLO Moniek | 64 |
55 | SLAPPENDEL Iris | 67 |
58 | FAHLIN Emilia | 63 |
71 | VAN DEN BROEK-BLAAK Chantal | 64 |
72 | VISSER Adrie | 59 |
74 | BRAMMEIER Nikki | 60 |
80 | KESSLER Nina | 60 |
83 | BATES Katherine | 69 |
94 | BELTMAN Chantal | 68 |