Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Teutenberg
1
64 kgWild
2
75 kgvan Dijk
4
71 kgvan Vleuten
6
59 kgDe Vocht
10
61 kgvan der Breggen
19
56 kgKoedooder
20
69 kgBrand
24
57 kgBates
26
69 kgvan den Broek-Blaak
30
64 kgBrammeier
31
60 kgSlappendel
33
67 kgBeltman
39
68 kgKessler
49
60 kgVisser
53
59 kgHenrion
57
60 kgFahlin
92
63 kgTenniglo
113
64 kg
1
64 kgWild
2
75 kgvan Dijk
4
71 kgvan Vleuten
6
59 kgDe Vocht
10
61 kgvan der Breggen
19
56 kgKoedooder
20
69 kgBrand
24
57 kgBates
26
69 kgvan den Broek-Blaak
30
64 kgBrammeier
31
60 kgSlappendel
33
67 kgBeltman
39
68 kgKessler
49
60 kgVisser
53
59 kgHenrion
57
60 kgFahlin
92
63 kgTenniglo
113
64 kg
Weight (KG) →
Result →
75
56
1
113
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | TEUTENBERG Ina-Yoko | 64 |
| 2 | WILD Kirsten | 75 |
| 4 | VAN DIJK Ellen | 71 |
| 6 | VAN VLEUTEN Annemiek | 59 |
| 10 | DE VOCHT Liesbet | 61 |
| 19 | VAN DER BREGGEN Anna | 56 |
| 20 | KOEDOODER Vera | 69 |
| 24 | BRAND Lucinda | 57 |
| 26 | BATES Katherine | 69 |
| 30 | VAN DEN BROEK-BLAAK Chantal | 64 |
| 31 | BRAMMEIER Nikki | 60 |
| 33 | SLAPPENDEL Iris | 67 |
| 39 | BELTMAN Chantal | 68 |
| 49 | KESSLER Nina | 60 |
| 53 | VISSER Adrie | 59 |
| 57 | HENRION Ludivine | 60 |
| 92 | FAHLIN Emilia | 63 |
| 113 | TENNIGLO Moniek | 64 |