Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Teutenberg
1
64 kgGunnewijk
2
67 kgDe Vocht
4
61 kgBecker
5
64 kgBeltman
6
68 kgVillumsen
7
59 kgBrammeier
9
60 kgDeignan
10
57 kgHosking
12
60 kgKoedooder
13
69 kgMartin
14
57 kgvan Vleuten
15
59 kgMustonen
20
58 kgMelchers
21
59 kgBrand
24
57 kgDruyts
25
62 kgSlappendel
26
67 kg
1
64 kgGunnewijk
2
67 kgDe Vocht
4
61 kgBecker
5
64 kgBeltman
6
68 kgVillumsen
7
59 kgBrammeier
9
60 kgDeignan
10
57 kgHosking
12
60 kgKoedooder
13
69 kgMartin
14
57 kgvan Vleuten
15
59 kgMustonen
20
58 kgMelchers
21
59 kgBrand
24
57 kgDruyts
25
62 kgSlappendel
26
67 kg
Weight (KG) →
Result →
69
57
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | TEUTENBERG Ina-Yoko | 64 |
2 | GUNNEWIJK Loes | 67 |
4 | DE VOCHT Liesbet | 61 |
5 | BECKER Charlotte | 64 |
6 | BELTMAN Chantal | 68 |
7 | VILLUMSEN Linda | 59 |
9 | BRAMMEIER Nikki | 60 |
10 | DEIGNAN Elizabeth | 57 |
12 | HOSKING Chloe | 60 |
13 | KOEDOODER Vera | 69 |
14 | MARTIN Lucy | 57 |
15 | VAN VLEUTEN Annemiek | 59 |
20 | MUSTONEN Sara | 58 |
21 | MELCHERS Mirjam | 59 |
24 | BRAND Lucinda | 57 |
25 | DRUYTS Kelly | 62 |
26 | SLAPPENDEL Iris | 67 |