Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Vos
1
58 kgWild
2
75 kgKoedooder
4
69 kgSlappendel
6
67 kgDe Vocht
7
61 kgPieters
9
58 kgvan den Broek-Blaak
10
64 kgBrand
14
57 kgEnsing
15
62 kgArys
16
60 kgHoskins
20
64 kgBates
26
69 kgvan den Brand
27
51 kgde Vries
29
62 kgEdmondson
43
66 kgCant
45
57 kgDuehring
49
54 kgTrott
58
56 kgKessler
72
60 kg
1
58 kgWild
2
75 kgKoedooder
4
69 kgSlappendel
6
67 kgDe Vocht
7
61 kgPieters
9
58 kgvan den Broek-Blaak
10
64 kgBrand
14
57 kgEnsing
15
62 kgArys
16
60 kgHoskins
20
64 kgBates
26
69 kgvan den Brand
27
51 kgde Vries
29
62 kgEdmondson
43
66 kgCant
45
57 kgDuehring
49
54 kgTrott
58
56 kgKessler
72
60 kg
Weight (KG) →
Result →
75
51
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | WILD Kirsten | 75 |
4 | KOEDOODER Vera | 69 |
6 | SLAPPENDEL Iris | 67 |
7 | DE VOCHT Liesbet | 61 |
9 | PIETERS Amy | 58 |
10 | VAN DEN BROEK-BLAAK Chantal | 64 |
14 | BRAND Lucinda | 57 |
15 | ENSING Janneke | 62 |
16 | ARYS Evelyn | 60 |
20 | HOSKINS Melissa | 64 |
26 | BATES Katherine | 69 |
27 | VAN DEN BRAND Daphny | 51 |
29 | DE VRIES Marijn | 62 |
43 | EDMONDSON Annette | 66 |
45 | CANT Sanne | 57 |
49 | DUEHRING Jasmin | 54 |
58 | TROTT Laura | 56 |
72 | KESSLER Nina | 60 |