Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 129
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Vos
1
58 kgWild
2
75 kgPieters
4
58 kgKoedooder
6
69 kgDe Vocht
9
61 kgSlappendel
11
67 kgvan den Broek-Blaak
13
64 kgDuyck
16
60 kgEnsing
17
62 kgBrand
19
57 kgTrott
20
56 kgArys
21
60 kgCant
23
57 kgVekemans
34
52 kgBates
40
69 kgde Vries
49
62 kgDuehring
52
54 kgEdmondson
68
66 kgHoskins
78
64 kgKessler
87
60 kgvan den Brand
116
51 kg
1
58 kgWild
2
75 kgPieters
4
58 kgKoedooder
6
69 kgDe Vocht
9
61 kgSlappendel
11
67 kgvan den Broek-Blaak
13
64 kgDuyck
16
60 kgEnsing
17
62 kgBrand
19
57 kgTrott
20
56 kgArys
21
60 kgCant
23
57 kgVekemans
34
52 kgBates
40
69 kgde Vries
49
62 kgDuehring
52
54 kgEdmondson
68
66 kgHoskins
78
64 kgKessler
87
60 kgvan den Brand
116
51 kg
Weight (KG) →
Result →
75
51
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | WILD Kirsten | 75 |
4 | PIETERS Amy | 58 |
6 | KOEDOODER Vera | 69 |
9 | DE VOCHT Liesbet | 61 |
11 | SLAPPENDEL Iris | 67 |
13 | VAN DEN BROEK-BLAAK Chantal | 64 |
16 | DUYCK Ann-Sophie | 60 |
17 | ENSING Janneke | 62 |
19 | BRAND Lucinda | 57 |
20 | TROTT Laura | 56 |
21 | ARYS Evelyn | 60 |
23 | CANT Sanne | 57 |
34 | VEKEMANS Anisha | 52 |
40 | BATES Katherine | 69 |
49 | DE VRIES Marijn | 62 |
52 | DUEHRING Jasmin | 54 |
68 | EDMONDSON Annette | 66 |
78 | HOSKINS Melissa | 64 |
87 | KESSLER Nina | 60 |
116 | VAN DEN BRAND Daphny | 51 |