Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
van den Broek-Blaak
1
64 kgPieters
3
58 kgVos
4
58 kgWild
5
75 kgArys
6
60 kgDe Vocht
7
61 kgSlappendel
9
67 kgHoskins
14
64 kgBrand
18
57 kgEnsing
19
62 kgCant
23
57 kgvan den Brand
25
51 kgKoedooder
26
69 kgde Vries
29
62 kgBates
31
69 kgDuehring
33
54 kgKessler
35
60 kgTrott
106
56 kgDuyck
125
60 kgEdmondson
144
66 kg
1
64 kgPieters
3
58 kgVos
4
58 kgWild
5
75 kgArys
6
60 kgDe Vocht
7
61 kgSlappendel
9
67 kgHoskins
14
64 kgBrand
18
57 kgEnsing
19
62 kgCant
23
57 kgvan den Brand
25
51 kgKoedooder
26
69 kgde Vries
29
62 kgBates
31
69 kgDuehring
33
54 kgKessler
35
60 kgTrott
106
56 kgDuyck
125
60 kgEdmondson
144
66 kg
Weight (KG) →
Result →
75
51
1
144
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BROEK-BLAAK Chantal | 64 |
3 | PIETERS Amy | 58 |
4 | VOS Marianne | 58 |
5 | WILD Kirsten | 75 |
6 | ARYS Evelyn | 60 |
7 | DE VOCHT Liesbet | 61 |
9 | SLAPPENDEL Iris | 67 |
14 | HOSKINS Melissa | 64 |
18 | BRAND Lucinda | 57 |
19 | ENSING Janneke | 62 |
23 | CANT Sanne | 57 |
25 | VAN DEN BRAND Daphny | 51 |
26 | KOEDOODER Vera | 69 |
29 | DE VRIES Marijn | 62 |
31 | BATES Katherine | 69 |
33 | DUEHRING Jasmin | 54 |
35 | KESSLER Nina | 60 |
106 | TROTT Laura | 56 |
125 | DUYCK Ann-Sophie | 60 |
144 | EDMONDSON Annette | 66 |