Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2 * weight + 149
This means that on average for every extra kilogram weight a rider loses -2 positions in the result.
Vos
1
58 kgWild
2
75 kgKoedooder
3
69 kgSlappendel
5
67 kgDe Vocht
8
61 kgvan den Broek-Blaak
9
64 kgPieters
10
58 kgHoskins
11
64 kgBrand
12
57 kgEdmondson
14
66 kgArys
17
60 kgEnsing
18
62 kgvan den Brand
28
51 kgBates
30
69 kgde Vries
36
62 kgCant
61
57 kgDuehring
65
54 kgTrott
66
56 kgKessler
80
60 kg
1
58 kgWild
2
75 kgKoedooder
3
69 kgSlappendel
5
67 kgDe Vocht
8
61 kgvan den Broek-Blaak
9
64 kgPieters
10
58 kgHoskins
11
64 kgBrand
12
57 kgEdmondson
14
66 kgArys
17
60 kgEnsing
18
62 kgvan den Brand
28
51 kgBates
30
69 kgde Vries
36
62 kgCant
61
57 kgDuehring
65
54 kgTrott
66
56 kgKessler
80
60 kg
Weight (KG) →
Result →
75
51
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | WILD Kirsten | 75 |
3 | KOEDOODER Vera | 69 |
5 | SLAPPENDEL Iris | 67 |
8 | DE VOCHT Liesbet | 61 |
9 | VAN DEN BROEK-BLAAK Chantal | 64 |
10 | PIETERS Amy | 58 |
11 | HOSKINS Melissa | 64 |
12 | BRAND Lucinda | 57 |
14 | EDMONDSON Annette | 66 |
17 | ARYS Evelyn | 60 |
18 | ENSING Janneke | 62 |
28 | VAN DEN BRAND Daphny | 51 |
30 | BATES Katherine | 69 |
36 | DE VRIES Marijn | 62 |
61 | CANT Sanne | 57 |
65 | DUEHRING Jasmin | 54 |
66 | TROTT Laura | 56 |
80 | KESSLER Nina | 60 |