Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
De Schrooder
9
61 kgZargari
11
62 kgMcCann
18
73 kgRichardson
19
75 kgHegreberg
20
72 kgKomar
25
73 kgNewton
30
69 kgQuast
35
67 kgPower
37
68 kgSaeidi Tanha
39
70 kgOliphant
40
66 kgHanson
44
74 kgLloyd
49
70 kgGyurov
55
75 kgO'Loughlin
59
68 kgJaniaczyk
61
68 kgSeymour
107
72 kg
9
61 kgZargari
11
62 kgMcCann
18
73 kgRichardson
19
75 kgHegreberg
20
72 kgKomar
25
73 kgNewton
30
69 kgQuast
35
67 kgPower
37
68 kgSaeidi Tanha
39
70 kgOliphant
40
66 kgHanson
44
74 kgLloyd
49
70 kgGyurov
55
75 kgO'Loughlin
59
68 kgJaniaczyk
61
68 kgSeymour
107
72 kg
Weight (KG) →
Result →
75
61
9
107
# | Rider | Weight (KG) |
---|---|---|
9 | DE SCHROODER Benny | 61 |
11 | ZARGARI Amir | 62 |
18 | MCCANN David | 73 |
19 | RICHARDSON Simon | 75 |
20 | HEGREBERG Morten | 72 |
25 | KOMAR Mateusz | 73 |
30 | NEWTON Christopher | 69 |
35 | QUAST Ole | 67 |
37 | POWER Ciarán | 68 |
39 | SAEIDI TANHA Abbas | 70 |
40 | OLIPHANT Evan | 66 |
44 | HANSON Ken | 74 |
49 | LLOYD Daniel | 70 |
55 | GYUROV Spas | 75 |
59 | O'LOUGHLIN David | 68 |
61 | JANIACZYK Błażej | 68 |
107 | SEYMOUR Robin | 72 |