Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Hanson
1
74 kgDe Schrooder
3
61 kgKomar
4
73 kgHegreberg
9
72 kgJaniaczyk
12
68 kgNewton
24
69 kgLloyd
28
70 kgOliphant
31
66 kgQuast
33
67 kgGyurov
36
75 kgMcCann
44
73 kgPower
51
68 kgRichardson
54
75 kgZargari
66
62 kgSaeidi Tanha
74
70 kgSeymour
77
72 kgO'Loughlin
80
68 kg
1
74 kgDe Schrooder
3
61 kgKomar
4
73 kgHegreberg
9
72 kgJaniaczyk
12
68 kgNewton
24
69 kgLloyd
28
70 kgOliphant
31
66 kgQuast
33
67 kgGyurov
36
75 kgMcCann
44
73 kgPower
51
68 kgRichardson
54
75 kgZargari
66
62 kgSaeidi Tanha
74
70 kgSeymour
77
72 kgO'Loughlin
80
68 kg
Weight (KG) →
Result →
75
61
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | HANSON Ken | 74 |
3 | DE SCHROODER Benny | 61 |
4 | KOMAR Mateusz | 73 |
9 | HEGREBERG Morten | 72 |
12 | JANIACZYK Błażej | 68 |
24 | NEWTON Christopher | 69 |
28 | LLOYD Daniel | 70 |
31 | OLIPHANT Evan | 66 |
33 | QUAST Ole | 67 |
36 | GYUROV Spas | 75 |
44 | MCCANN David | 73 |
51 | POWER Ciarán | 68 |
54 | RICHARDSON Simon | 75 |
66 | ZARGARI Amir | 62 |
74 | SAEIDI TANHA Abbas | 70 |
77 | SEYMOUR Robin | 72 |
80 | O'LOUGHLIN David | 68 |