Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 54
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Oliphant
2
66 kgHanson
17
74 kgHegreberg
20
72 kgLloyd
24
70 kgZargari
29
62 kgKomar
34
73 kgNewton
39
69 kgMcCann
42
73 kgPower
45
68 kgDe Schrooder
46
61 kgO'Loughlin
47
68 kgQuast
49
67 kgRichardson
54
75 kgGyurov
83
75 kgJaniaczyk
94
68 kgSaeidi Tanha
115
70 kgSeymour
122
72 kg
2
66 kgHanson
17
74 kgHegreberg
20
72 kgLloyd
24
70 kgZargari
29
62 kgKomar
34
73 kgNewton
39
69 kgMcCann
42
73 kgPower
45
68 kgDe Schrooder
46
61 kgO'Loughlin
47
68 kgQuast
49
67 kgRichardson
54
75 kgGyurov
83
75 kgJaniaczyk
94
68 kgSaeidi Tanha
115
70 kgSeymour
122
72 kg
Weight (KG) →
Result →
75
61
2
122
# | Rider | Weight (KG) |
---|---|---|
2 | OLIPHANT Evan | 66 |
17 | HANSON Ken | 74 |
20 | HEGREBERG Morten | 72 |
24 | LLOYD Daniel | 70 |
29 | ZARGARI Amir | 62 |
34 | KOMAR Mateusz | 73 |
39 | NEWTON Christopher | 69 |
42 | MCCANN David | 73 |
45 | POWER Ciarán | 68 |
46 | DE SCHROODER Benny | 61 |
47 | O'LOUGHLIN David | 68 |
49 | QUAST Ole | 67 |
54 | RICHARDSON Simon | 75 |
83 | GYUROV Spas | 75 |
94 | JANIACZYK Błażej | 68 |
115 | SAEIDI TANHA Abbas | 70 |
122 | SEYMOUR Robin | 72 |