Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 126
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Newton
1
69 kgMcCann
2
73 kgKomar
3
73 kgPower
4
68 kgZargari
7
62 kgHegreberg
9
72 kgDe Schrooder
10
61 kgQuast
18
67 kgJaniaczyk
24
68 kgO'Loughlin
40
68 kgHanson
41
74 kgRichardson
44
75 kgLloyd
48
70 kgOliphant
49
66 kgGyurov
50
75 kgSaeidi Tanha
107
70 kgSeymour
126
72 kg
1
69 kgMcCann
2
73 kgKomar
3
73 kgPower
4
68 kgZargari
7
62 kgHegreberg
9
72 kgDe Schrooder
10
61 kgQuast
18
67 kgJaniaczyk
24
68 kgO'Loughlin
40
68 kgHanson
41
74 kgRichardson
44
75 kgLloyd
48
70 kgOliphant
49
66 kgGyurov
50
75 kgSaeidi Tanha
107
70 kgSeymour
126
72 kg
Weight (KG) →
Result →
75
61
1
126
# | Rider | Weight (KG) |
---|---|---|
1 | NEWTON Christopher | 69 |
2 | MCCANN David | 73 |
3 | KOMAR Mateusz | 73 |
4 | POWER Ciarán | 68 |
7 | ZARGARI Amir | 62 |
9 | HEGREBERG Morten | 72 |
10 | DE SCHROODER Benny | 61 |
18 | QUAST Ole | 67 |
24 | JANIACZYK Błażej | 68 |
40 | O'LOUGHLIN David | 68 |
41 | HANSON Ken | 74 |
44 | RICHARDSON Simon | 75 |
48 | LLOYD Daniel | 70 |
49 | OLIPHANT Evan | 66 |
50 | GYUROV Spas | 75 |
107 | SAEIDI TANHA Abbas | 70 |
126 | SEYMOUR Robin | 72 |