Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 142
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
McCann
1
73 kgRichardson
4
75 kgHanson
12
74 kgKomar
13
73 kgJaniaczyk
18
68 kgDe Schrooder
21
61 kgGyurov
24
75 kgZargari
32
62 kgQuast
41
67 kgNewton
50
69 kgPower
61
68 kgSaeidi Tanha
69
70 kgHegreberg
71
72 kgOliphant
75
66 kgLloyd
76
70 kgO'Loughlin
117
68 kgSeymour
118
72 kg
1
73 kgRichardson
4
75 kgHanson
12
74 kgKomar
13
73 kgJaniaczyk
18
68 kgDe Schrooder
21
61 kgGyurov
24
75 kgZargari
32
62 kgQuast
41
67 kgNewton
50
69 kgPower
61
68 kgSaeidi Tanha
69
70 kgHegreberg
71
72 kgOliphant
75
66 kgLloyd
76
70 kgO'Loughlin
117
68 kgSeymour
118
72 kg
Weight (KG) →
Result →
75
61
1
118
# | Rider | Weight (KG) |
---|---|---|
1 | MCCANN David | 73 |
4 | RICHARDSON Simon | 75 |
12 | HANSON Ken | 74 |
13 | KOMAR Mateusz | 73 |
18 | JANIACZYK Błażej | 68 |
21 | DE SCHROODER Benny | 61 |
24 | GYUROV Spas | 75 |
32 | ZARGARI Amir | 62 |
41 | QUAST Ole | 67 |
50 | NEWTON Christopher | 69 |
61 | POWER Ciarán | 68 |
69 | SAEIDI TANHA Abbas | 70 |
71 | HEGREBERG Morten | 72 |
75 | OLIPHANT Evan | 66 |
76 | LLOYD Daniel | 70 |
117 | O'LOUGHLIN David | 68 |
118 | SEYMOUR Robin | 72 |