Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 153
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Richardson
1
75 kgO'Loughlin
2
68 kgKomar
3
73 kgPower
4
68 kgHanson
6
74 kgHegreberg
7
72 kgJaniaczyk
12
68 kgMcCann
21
73 kgNewton
24
69 kgLloyd
32
70 kgZargari
39
62 kgGyurov
45
75 kgDe Schrooder
49
61 kgOliphant
56
66 kgQuast
61
67 kgSaeidi Tanha
82
70 kgSeymour
92
72 kg
1
75 kgO'Loughlin
2
68 kgKomar
3
73 kgPower
4
68 kgHanson
6
74 kgHegreberg
7
72 kgJaniaczyk
12
68 kgMcCann
21
73 kgNewton
24
69 kgLloyd
32
70 kgZargari
39
62 kgGyurov
45
75 kgDe Schrooder
49
61 kgOliphant
56
66 kgQuast
61
67 kgSaeidi Tanha
82
70 kgSeymour
92
72 kg
Weight (KG) →
Result →
75
61
1
92
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | RICHARDSON Simon | 75 |
| 2 | O'LOUGHLIN David | 68 |
| 3 | KOMAR Mateusz | 73 |
| 4 | POWER Ciarán | 68 |
| 6 | HANSON Ken | 74 |
| 7 | HEGREBERG Morten | 72 |
| 12 | JANIACZYK Błażej | 68 |
| 21 | MCCANN David | 73 |
| 24 | NEWTON Christopher | 69 |
| 32 | LLOYD Daniel | 70 |
| 39 | ZARGARI Amir | 62 |
| 45 | GYUROV Spas | 75 |
| 49 | DE SCHROODER Benny | 61 |
| 56 | OLIPHANT Evan | 66 |
| 61 | QUAST Ole | 67 |
| 82 | SAEIDI TANHA Abbas | 70 |
| 92 | SEYMOUR Robin | 72 |