Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 135
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Power
1
68 kgRichardson
4
75 kgJaniaczyk
10
68 kgMcCann
13
73 kgGyurov
31
75 kgHegreberg
34
72 kgLloyd
36
70 kgQuast
40
67 kgNewton
47
69 kgZargari
61
62 kgDe Schrooder
63
61 kgKomar
64
73 kgOliphant
65
66 kgHanson
74
74 kgO'Loughlin
75
68 kgSaeidi Tanha
98
70 kgSeymour
104
72 kg
1
68 kgRichardson
4
75 kgJaniaczyk
10
68 kgMcCann
13
73 kgGyurov
31
75 kgHegreberg
34
72 kgLloyd
36
70 kgQuast
40
67 kgNewton
47
69 kgZargari
61
62 kgDe Schrooder
63
61 kgKomar
64
73 kgOliphant
65
66 kgHanson
74
74 kgO'Loughlin
75
68 kgSaeidi Tanha
98
70 kgSeymour
104
72 kg
Weight (KG) →
Result →
75
61
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | POWER Ciarán | 68 |
4 | RICHARDSON Simon | 75 |
10 | JANIACZYK Błażej | 68 |
13 | MCCANN David | 73 |
31 | GYUROV Spas | 75 |
34 | HEGREBERG Morten | 72 |
36 | LLOYD Daniel | 70 |
40 | QUAST Ole | 67 |
47 | NEWTON Christopher | 69 |
61 | ZARGARI Amir | 62 |
63 | DE SCHROODER Benny | 61 |
64 | KOMAR Mateusz | 73 |
65 | OLIPHANT Evan | 66 |
74 | HANSON Ken | 74 |
75 | O'LOUGHLIN David | 68 |
98 | SAEIDI TANHA Abbas | 70 |
104 | SEYMOUR Robin | 72 |