Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 26
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Hegreberg
8
72 kgDe Schrooder
9
61 kgSaeidi Tanha
11
70 kgZargari
12
62 kgMcCann
25
73 kgRichardson
30
75 kgKomar
34
73 kgNewton
44
69 kgGyurov
45
75 kgOliphant
58
66 kgQuast
65
67 kgLloyd
66
70 kgJaniaczyk
67
68 kgO'Loughlin
77
68 kgSeymour
78
72 kgHanson
90
74 kgPower
98
68 kg
8
72 kgDe Schrooder
9
61 kgSaeidi Tanha
11
70 kgZargari
12
62 kgMcCann
25
73 kgRichardson
30
75 kgKomar
34
73 kgNewton
44
69 kgGyurov
45
75 kgOliphant
58
66 kgQuast
65
67 kgLloyd
66
70 kgJaniaczyk
67
68 kgO'Loughlin
77
68 kgSeymour
78
72 kgHanson
90
74 kgPower
98
68 kg
Weight (KG) →
Result →
75
61
8
98
# | Rider | Weight (KG) |
---|---|---|
8 | HEGREBERG Morten | 72 |
9 | DE SCHROODER Benny | 61 |
11 | SAEIDI TANHA Abbas | 70 |
12 | ZARGARI Amir | 62 |
25 | MCCANN David | 73 |
30 | RICHARDSON Simon | 75 |
34 | KOMAR Mateusz | 73 |
44 | NEWTON Christopher | 69 |
45 | GYUROV Spas | 75 |
58 | OLIPHANT Evan | 66 |
65 | QUAST Ole | 67 |
66 | LLOYD Daniel | 70 |
67 | JANIACZYK Błażej | 68 |
77 | O'LOUGHLIN David | 68 |
78 | SEYMOUR Robin | 72 |
90 | HANSON Ken | 74 |
98 | POWER Ciarán | 68 |