Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 111
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
O'Loughlin
1
68 kgOliphant
2
66 kgJaniaczyk
3
68 kgPower
5
68 kgKomar
7
73 kgHegreberg
11
72 kgQuast
13
67 kgMcCann
17
73 kgDe Schrooder
27
61 kgLloyd
28
70 kgZargari
31
62 kgGyurov
37
75 kgRichardson
41
75 kgHanson
60
74 kgNewton
65
69 kgSaeidi Tanha
88
70 kgSeymour
116
72 kg
1
68 kgOliphant
2
66 kgJaniaczyk
3
68 kgPower
5
68 kgKomar
7
73 kgHegreberg
11
72 kgQuast
13
67 kgMcCann
17
73 kgDe Schrooder
27
61 kgLloyd
28
70 kgZargari
31
62 kgGyurov
37
75 kgRichardson
41
75 kgHanson
60
74 kgNewton
65
69 kgSaeidi Tanha
88
70 kgSeymour
116
72 kg
Weight (KG) →
Result →
75
61
1
116
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | O'LOUGHLIN David | 68 |
| 2 | OLIPHANT Evan | 66 |
| 3 | JANIACZYK Błażej | 68 |
| 5 | POWER Ciarán | 68 |
| 7 | KOMAR Mateusz | 73 |
| 11 | HEGREBERG Morten | 72 |
| 13 | QUAST Ole | 67 |
| 17 | MCCANN David | 73 |
| 27 | DE SCHROODER Benny | 61 |
| 28 | LLOYD Daniel | 70 |
| 31 | ZARGARI Amir | 62 |
| 37 | GYUROV Spas | 75 |
| 41 | RICHARDSON Simon | 75 |
| 60 | HANSON Ken | 74 |
| 65 | NEWTON Christopher | 69 |
| 88 | SAEIDI TANHA Abbas | 70 |
| 116 | SEYMOUR Robin | 72 |